

LTD0385 Direct Drive

Bearing assemblies with direct drive are suitable for applications where high performance and low space requirements are important criteria. The integration of the drive into the bearing housing means that wear-prone assemblies for transmitting drive power, such as toothed belts, shafts or chains, can be dispensed with. This reduces the required drive energy and also benefits more accurate positioning.

Technical data

Material

C45N (optionally aluminium)

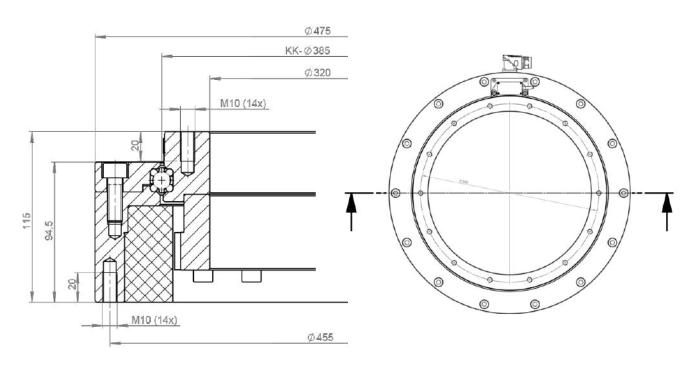
Operating temperature

-10 °C to +80 °C

Mounting position

Any

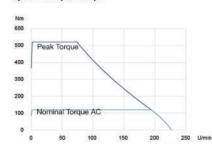
Lubricant


With bearing grease via grease nipples

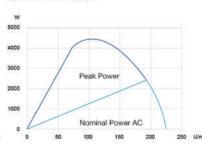
Options

Absolute measuring system, axial cable outlet, cables, water-cooling

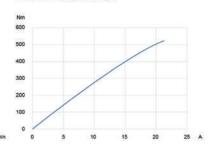
LTD0385														
Name	KKØ mm	Lo	ad ra kN	_	S		que m		wer 4	Speed 1/min.	Weight kg	Engine type	Order no.	CAD Cadenas
		Coa	Cor	Ca	Cr	MNom	MPeak	INom	IPeak	nmax				
LTD0385	385	458	216	48	41	118	522	4,3	21,7	193	57	TI435-370-025	609913	$\boxed{ \ }$

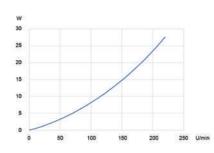

Power Comparison

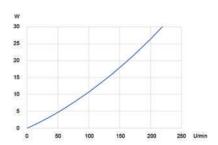
Power comparison			LTD-0100	LTD-0215	LTD-0320	LTD-0385	
Nominal Data (Air cooling)							
Nominal Torque	TNomAC	Nm	4,5	26,4	77	11	
Nominal Current	INomAC	Arms	1,8	3,1	4,3	4,	
Nomnal Speed	nNomAC	rpm	2140	640	299	19	
Nomnal Power	PNomAC	W	1005	1770	2409	238	
Winding Losses ¹	PVNennLk	W	54	131	230	30	
Totel Losses ²	PDAC	W	96	179	295	35	
Holding Torque	THAC	Nm	3,2	18,7	54	8	
Holding Current	IHAC	Arms	1,2	2,2	3		
Peak Data							
Peak Torque	TPeak	Nm	16	105	329	52	
Peak Current	IPeak	Arms	7	12,8	21,6	21,	
Speed at Peak Torque	nPeak	U/min	1130	320	126	7	
Peak Power	PPeak	W	1897	3526	4343	404	
Winding Losses ¹	PPeak	W	863	2236	5886	787	
Totel Losses ²	PDPeak	W	877	2253	5904	788	
Power Data							
Torque Constant	kt	Nm/Arms	2,549	8,51	18,037	27,449	
		Vrms/(rad/s)	1,577	5,2	11,094	16,694	
BEMF Constant (Phase - Phase)	ke	Vrms(rpm)	0,165	0,545	1,162	1,748	
Motor Constant	km	Nm/vW	0,459	1,973	4,483	6,25	
Idle Speed	nidle	rpm	2390	727	340	226	
max. Speed (Fieldweaking)	nmax	rpm	-	-	-		
max. Frequenz (Idle)	fmax	Hz	398	254	159	124	
max. Frequenz (Fieldweaking)	fmax	Hz	-	-	-		
DC Bus Voltage	UDC	VDC	560	560	560	560	
Ø Resistance per Phase (winding only)	RPh20	Ω	4,419	3,457	3,206	4,235	
Ø Inductance per Phase (winding only)	LPh	mH	21,727	19,532	21,071	28,049	
electr. Time Constant t=L/R	Tel	ms	4,92	5,65	6,57	6,62	
Number of Polepairs Winding Connection	n		10 Star	21 Star	28 Star	33 Sta	
-							
Measuring System Measuring Method				increme	ntal		
Reference mark				single co			
Measuring principle			inductive				
Interface			1 Vpp				
Cable length			1 m				
Grating period				1000 µ			
Line count			256	640	938	1200	
Interpolation				10-fol			
Number of signal periods			2560	6400	9380	12000	
Position error per grating period			±11"	±4,5"	±3"	±2,5"	
Grating period accuracy (±10µm arc length)			±51"	±20"	±14"	±11"	
Max. scaning frequency				40 kH			
Voltage supply			4V to 7V DC				
voltage Supply							



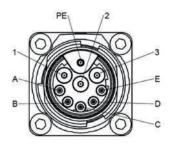
Power Graphs


Speed-Torque-Graph


Speed-Power-Graph


Current-Torque-Graph

Stator Iron Losses



Rotor Losses

rın assığınneni motor

Socket 917, M17x1 (9-pin)

Pin assignment

PIN	Signal	PIN	Signal	
1	Phase U	Α	PT1000	
2	Phase V	В	PT1000	
3	Phase W	С	PTC 120°	
PE	protective conductor	D	PTC 120°	
		E	free	

Pin assignment measuring system

03S12 12-pin coupling M23

Pin assignment

Pow	er supply	Incr	emental signals	Other signals		
12	Up	5	A+	1	free	
2	Sensor Up	6	A-	7	Diag+	
10	0 V	8	B+	9	Diag-	
11	Sensor 0 V	1	B-			
		3	R+			
		4	R-			

Annotations:

1Winding Losses are referred to a Coil Temperature of 100 $^{\circ}\text{C}.$

2The total Losses are made up of: Winding Losses; Stator Iron Losses; Rotor Losses; Calculation of total Losses: Winding Losses + Stator Iron Losses (at speed X) + Rotor Losses (at speed X)

Ensure that your servo drive can handle the Nominal- and Peakcurrent of the Motor. An adjustment of the Speed and DC Bus Voltage can be done after consultation. The nominal data in this datasheet are based on an ambient/coolant temperature of 20°C The stated nominal Torques are without consideration of friction losses through Bearings or Sealings.

Because the exact duty type depends also on the thermal connection of the motor, the embedded thermal monitoring system has to be analysed and attented. However, attention has to be payed that the temperature sensors do not show the exact temperature of the winding and this could be up to 20 K higher due to thermal capacities. Despite an electrical insulation towards the winding, you are only allowed to connect the sensors to your controller by using a galvanic separation in between.n.